China high quality Casting Belt Pulley with Taper Bushing/Pulley/V-Belt Pulley/Gear/Conveyor/Transmission Gear/Equipment /Conveyor Roller/Groove Puley pulley and belt

Product Description

Product Description

V-belt pulley introduces:
V- Belt pulley of different types (according to type and width of belts). The material used is cast iron EN-GJL-250 CHINAMFG EN 1561, and for only a few types it is steel C45 E CHINAMFG EN 10083-1. They have a small preborn that can be machined according to customers' requirements. Moreover the most common types are available also with taper lock bore.
V belt pulley specifications
·  European standards :
    a) V-belt pulley for taper bushing: SPZ, SPA, SPB, SPC   
    b) Adjustable speed V-belt pulleys and variable speed pulleys             
    c) Flat belt pulleys and conveyor belt pulleys
·   Bore: Pilot bore, finish bore, taper bore, and bore for QD bushing
·   Parts can be made according to drawings or samples

Detailed Photos

Product Parameters

 

Certifications

Packaging & Shipping

Normally we pack with plastic film and wooden pallet, but if you have any special requests then feel free to advise us.

Company Profile

HangZhou CHINAMFG Machinery Equipment Co., Ltd. was established on February 1, 2018. It is located at No. 27, Xihu (West Lake) Dis.shao Avenue, South China Advanced Equipment Park, Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province China. It covers an area of 40,000 square CHINAMFG and a total of 27,000 square CHINAMFG of workshops, with a total investment of 120 million RMB. So far, there are more than 140 employees, more than 100 workshop workers, 3 senior engineers, 5 quality inspectors, 3 purchasing personnel, and more than 20 persons of all functional departments. The predecessor of the company was HangZhou Zhuwang Machinery Equipment Co., Ltd., which was established on September 26, 2014.
The company is equipped with a set of fully automatic double-head static pressure casting production line equipment, sand mold size 1200*1000*250/250, a total of 202 sand boxes, with a set of 2*3tons electric CHINAMFG and a set of 2*2tons electric furnace, a set of 120-ton sand processing equipment, realizes automatic operation of casting production, and can produce 5,000 tons of various castings every month, and can produce castings with specifications of 5-200 kg.
The company mainly produces and sells castings of various specifications, such as: precision castings, auto parts castings, mechanical castings, valve castings, etc. Our company's product quality is high-quality, and we always adhere to and implement the "quality is the foundation of enterprise survival, and provide users with satisfactory products and services. is our CHINAMFG pursuit "quality policy.
The company's products are all in line with the national standard (GB), with rich varieties and complete specifications. They are widely used in petroleum, chemical, electric power, boiler, ship, machinery and other industries. They have been sold all over the country and have been well received by many customers.

After Sales Service

For after-sale stage, our service team always keep close contact with you and always stand by at your service. Our warranty is 12 months after delivery. If there is any defect about our products and our service, please keep us informed. We will deal with them unconditionally.

FAQ

1) What is your main product?
  Our major products are V-belt pulley, manhole cover and types of casting parts.
2) Do you have MOQ for your product?
  Normally our MOQ is 1*20 feet container, but if you want to make some trial order, feel free to contact us.
3) How about your delivery time?
  In hot season it is about 1 month, in slack season it is only about 15 workdays.
4) What is your payment term?
 T/T, L/C, Western Union
5)  Can you send me a price list?
  Of course, pls contact us and get it.
6) Can you provide samples?
  Sure, you only need to pay the dilivery cost.

 

Certification: ISO
Pulley Sizes: Type B
Manufacturing Process: Casting
Material: Iron
Surface Treatment: Oxygenation
Application: Mining Transport, Agricultural Machine
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gear pulley

How are gear pulleys used in the production of electronics and manufacturing?

In the production of electronics and manufacturing processes, gear pulleys serve a variety of important functions. They are utilized in different applications to facilitate precise movements, power transmission, and speed control. Here's a detailed explanation of how gear pulleys are used in the production of electronics and manufacturing:

1. Conveyor Systems:

In electronics and manufacturing facilities, conveyor systems are frequently employed for the transportation of components, products, or materials between different stages of the production process. Gear pulleys play a key role in driving the conveyor belts, enabling the smooth movement of items along the assembly line. These pulleys ensure consistent speed and precise positioning, allowing for efficient and automated production workflows.

2. Robotics and Automated Machinery:

Gear pulleys are integral components in robotics and automated machinery used in electronics and manufacturing. They are employed in robotic arms, gantry systems, and other automated equipment to provide precise and controlled movement. Gear pulleys drive the motors that control the motion of the robotic systems, allowing for accurate positioning, assembly, soldering, or testing of electronic components and devices.

3. Printing and Labeling Equipment:

In electronics and manufacturing, gear pulleys are used in printing and labeling equipment. They are utilized to drive the printing heads, label applicators, or other mechanisms involved in printing or applying labels to products or components. Gear pulleys ensure consistent and precise movement of these components, facilitating accurate printing and labeling in high-speed production environments.

4. Testing and Inspection Systems:

Gear pulleys are employed in testing and inspection systems used in electronics and manufacturing. These systems often require precise and controlled movements for the accurate positioning of components or test probes. Gear pulleys drive the motors that control the movement of testing fixtures, allowing for precise alignment and contact with the tested components. This ensures reliable and accurate testing and inspection results.

5. Machinery Speed Control:

In various manufacturing processes, gear pulleys are utilized for speed control. By using different pulley sizes and ratios, operators can adjust the rotational speed of machinery components. This flexibility allows for customization of the production process according to the specific requirements of different tasks or materials. Gear pulleys enable manufacturers to optimize the speed of cutting tools, processing equipment, or assembly lines, ensuring efficient and precise manufacturing operations.

6. Automated Assembly and Packaging:

In electronics manufacturing, gear pulleys are used in automated assembly and packaging systems. They contribute to the precise movement and positioning of electronic components, ensuring accurate placement and alignment during the assembly process. Gear pulleys drive the motors that control the robotic arms, pick-and-place mechanisms, or other automated systems involved in component placement and packaging operations.

7. Maintenance and Replacement:

Regular maintenance and inspection of gear pulleys are essential to ensure their reliability and performance in electronics and manufacturing processes. Operators should check for wear, damage, or misalignment of the gear teeth and pulley surfaces. Proper lubrication and tensioning of belts or chains connected to the gear pulleys are also important for their smooth operation. Timely replacement of worn or damaged gear pulleys is crucial to avoid interruptions in production and maintain the efficiency of manufacturing operations.

In conclusion, gear pulleys are widely used in the production of electronics and manufacturing processes. They contribute to the precise movements, power transmission, speed control, and automation required for efficient and accurate manufacturing operations. Proper maintenance and replacement of gear pulleys are necessary to ensure their reliability and optimal performance in electronics and manufacturing facilities.

gear pulley

How does the gear ratio in a gear pulley affect its performance?

The gear ratio in a gear pulley has a significant impact on its performance, influencing various aspects such as speed, torque, and power transmission. Here's a detailed explanation of how the gear ratio affects the performance of a gear pulley:

Gear Ratio Basics:

The gear ratio represents the relationship between the number of teeth on the driving gear and the number of teeth on the driven gear. It determines how many times the driving gear must rotate to make the driven gear complete one revolution. The gear ratio is typically expressed as a numerical ratio or as a fraction.

Speed:

The gear ratio directly affects the speed of the driven gear relative to the driving gear. A gear pulley with a higher gear ratio, where the driving gear has more teeth than the driven gear, will result in a lower speed at the driven gear. Conversely, a gear pulley with a lower gear ratio, where the driven gear has more teeth, will result in a higher speed at the driven gear. Therefore, the gear ratio determines the speed reduction or amplification between the driving and driven gears.

Torque:

The gear ratio also influences the torque at the driven gear. Torque is a rotational force that determines the system's ability to overcome resistance or to perform work. A gear pulley with a higher gear ratio, where the driving gear has more teeth, will result in a torque amplification at the driven gear. This means that the driven gear can exert greater force or torque on the load or system it is connected to. Conversely, a gear pulley with a lower gear ratio, where the driven gear has more teeth, will result in a torque reduction at the driven gear. In this case, the driven gear will exert less force or torque, but it will be able to rotate at a higher speed.

Power Transmission:

The gear ratio affects the power transmission capabilities of the gear pulley system. Power is the rate at which work is done or energy is transferred. The gear ratio determines how the power is distributed between the driving and driven gears. In a gear pulley system, the power is equal to the product of torque and rotational speed. A higher gear ratio will result in a higher torque at the driven gear, allowing it to transmit more power to the connected system. Conversely, a lower gear ratio will result in a higher speed at the driven gear, enabling it to transmit power at a faster rate.

Mechanical Advantage:

The gear ratio provides mechanical advantage in a gear pulley system. Mechanical advantage refers to the ability of a system to amplify force or torque. A gear pulley with a higher gear ratio provides a greater mechanical advantage, allowing it to handle heavier loads or perform tasks that require more force. On the other hand, a gear pulley with a lower gear ratio provides a lower mechanical advantage but allows for higher speeds and faster operation.

Efficiency:

The gear ratio can also impact the overall efficiency of the gear pulley system. In general, gear systems with higher gear ratios tend to have lower efficiency due to increased friction and power losses. The additional teeth in the gear train result in more contact points and increased surface area, leading to higher friction losses. Therefore, it is important to consider the trade-off between speed, torque, and efficiency when selecting the gear ratio for a specific application.

Overall, the gear ratio in a gear pulley significantly affects its performance, including speed, torque, power transmission, mechanical advantage, and efficiency. By selecting the appropriate gear ratio, engineers and designers can optimize the gear pulley system for specific applications, ensuring the desired balance between speed, torque, and efficiency based on the requirements of the machinery or system.

gear pulley

What are the advantages of using gear pulleys in various systems?

Gear pulleys offer several advantages when used in various systems. Here's a detailed explanation of the advantages of using gear pulleys:

  • Efficient Power Transmission: Gear pulleys provide efficient power transmission between rotating shafts. They minimize energy losses by reducing friction and slippage, ensuring that a large portion of the input power is effectively transferred to the driven components. This efficiency is crucial in applications where maximizing power transfer is essential, such as in industrial machinery, automotive systems, and power generation equipment.
  • Speed Control: Gear pulleys allow for precise speed control in power transmission systems. By varying the sizes of the gears or pulleys, the rotational speed of the driven component can be adjusted relative to the input speed. This speed control capability is valuable in applications where different components within a system require specific rotational speeds, such as in conveyor systems, machining equipment, and automotive transmissions.
  • Torque Conversion: Gear pulleys assist in torque conversion during power transmission. By utilizing gears or pulleys with different sizes or numbers of teeth, gear pulleys can change the torque applied to the driven component. This torque conversion capability allows for the adaptation of power output to the requirements of the driven component. It is particularly beneficial in applications where precise torque delivery is crucial, such as in robotics, lifting systems, and heavy machinery.
  • Direction Control: Gear pulleys enable precise control over the direction of rotational motion in power transmission systems. By combining gears or pulleys in specific arrangements, the direction of rotation can be changed as needed. This direction control capability is advantageous in applications where components require bidirectional movement or when the power source needs to be synchronized with the driven component, such as in automotive steering systems, robotics, and conveyor systems with reversing functionality.
  • Compact Design: Gear pulleys allow for the design of compact power transmission systems. They can transmit power over relatively short distances while maintaining a small form factor. This compactness is advantageous in applications where space is limited, such as in compact machinery, automotive drivetrains, and portable equipment.
  • Load Distribution: Gear pulleys help distribute mechanical loads across multiple components within a system. By incorporating multiple gears or pulleys, power can be split and transmitted to several output shafts. This load distribution capability is beneficial in applications where power needs to be shared or when simultaneous operation of multiple components is required, such as in printing presses, conveyor systems with multiple branches, and complex mechanical systems.
  • Mechanical Advantage: Gear pulleys provide mechanical advantage in power transmission systems. The mechanical advantage is the ratio of output force (torque) to input force (torque). By utilizing gears or pulleys with different sizes, gear pulleys can amplify or reduce the mechanical advantage. This allows for the adaptation of power transmission to match the specific requirements of the driven component. Gear pulleys enable the transmission of high torque at low speeds or low torque at high speeds, depending on the mechanical advantage needed.
  • Durability and Reliability: Gear pulleys are known for their durability and reliability. They are designed to withstand high loads, resist wear, and operate smoothly over extended periods. Gear pulleys are commonly made from robust materials such as steel or hardened alloys, ensuring their longevity and ability to handle demanding applications. This durability and reliability are crucial in industries where continuous operation and minimal downtime are essential, such as in manufacturing, automotive, and heavy machinery.

These advantages make gear pulleys highly valuable in various systems across industries. Whether it's for efficient power transmission, precise speed and torque control, compact design, load distribution, or reliable operation, gear pulleys offer versatile solutions to meet the diverse needs of mechanical systems.

China high quality Casting Belt Pulley with Taper Bushing/Pulley/V-Belt Pulley/Gear/Conveyor/Transmission Gear/Equipment /Conveyor Roller/Groove Puley   pulley and belt	China high quality Casting Belt Pulley with Taper Bushing/Pulley/V-Belt Pulley/Gear/Conveyor/Transmission Gear/Equipment /Conveyor Roller/Groove Puley   pulley and belt
editor by CX